Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nat Genet ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684898

RESUMEN

Health equity is the state in which everyone has fair and just opportunities to attain their highest level of health. The field of human genomics has fallen short in increasing health equity, largely because the diversity of the human population has been inadequately reflected among participants of genomics research. This lack of diversity leads to disparities that can have scientific and clinical consequences. Achieving health equity related to genomics will require greater effort in addressing inequities within the field. As part of the commitment of the National Human Genome Research Institute (NHGRI) to advancing health equity, it convened experts in genomics and health equity research to make recommendations and performed a review of current literature to identify the landscape of gaps and opportunities at the interface between human genomics and health equity research. This Perspective describes these findings and examines health equity within the context of human genomics and genomic medicine.

2.
J Cancer Educ ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520478

RESUMEN

In our previous publication, we reported a framework to develop an undergraduate cancer research training program at Florida A&M University (FAMU) under the umbrella of the Florida-California Cancer Research, Education, and Engagement (CaRE2) Health Equity Center activity by harnessing the resources available at FAMU, the University of Florida (UF), and the University of Southern California (USC) Cancer Centers. The implementation of the CaRE2 face-to-face training platform was dramatically affected by the COVID-19 pandemic during the summer of 2020 and 2021 training periods. However, a concerted effort was made to restructure the face-to-face training model into virtual and hybrid training methods to maintain the continuity of the program during the pandemic. This article compared the three methods to identify the best platform for training URM students in cancer disparity research. The program's effectiveness was measured through motivation, experiences, and knowledge gained by trainees during and one year after the completion of the program. The results showed that the participants were highly positive in their feedback about the professional and academic values of the program. Although the virtual and hybrid methods experienced significant challenges during the pandemic, the hybrid training module offered an "above average" effectiveness in performance, like the face-to-face mentoring platform in mentoring URM students in cancer disparity research.

3.
Cell Death Differ ; 31(1): 1-8, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001255

RESUMEN

Multiple Myeloma is a typical example of a neoplasm that shows significant differences in incidence, age of onset, type, and frequency of genetic alterations between patients of African and European ancestry. This perspective explores the hypothesis that both genetic polymorphisms and spontaneous somatic mutations in the TP53 tumor suppressor gene are determinants of these differences. In the US, the rates of occurrence of MM are at least twice as high in African Americans (AA) as in Caucasian Americans (CA). Strikingly, somatic TP53 mutations occur in large excess (at least 4-6-fold) in CA versus AA. On the other hand, TP53 contains polymorphisms specifying amino-acid differences that are under natural selection by the latitude of a population and have evolved during the migrations of humans over several hundred thousand years. The p53 protein plays important roles in DNA strand break repair and, therefore, in the surveillance of aberrant DNA recombination, leading to the B-cell translocations that are causal in the pathogenesis of MM. We posit that polymorphisms in one region of the TP53 gene (introns 2 and 3, and the proline-rich domain) specify a concentration of the p53 protein with a higher capacity to repress translocations in CA than AA patients. This, in turn, results in a higher risk of acquiring inactivating, somatic mutations in a different region of the TP53 gene (DNA binding domain) in CA than in AA patients. Such a mechanism, by which the polymorphic status of a gene influencing its own "spontaneous" mutation frequency, may provide a genetic basis to address ethnicity-related differences in the incidence and phenotypes of many different forms of cancer.


Asunto(s)
Mieloma Múltiple , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Mieloma Múltiple/genética , Mutación , Genes p53 , Translocación Genética , ADN
4.
medRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106140

RESUMEN

Background: In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods: A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results: The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions: We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.

5.
Cell Rep ; 42(12): 113286, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995179

RESUMEN

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and presents clinically with a high degree of biological heterogeneity and distinct clinical outcomes. The current paradigm of LUAD etiology posits alveolar epithelial type II (AT2) cells as the primary cell of origin, while the role of AT1 cells in LUAD oncogenesis remains unknown. Here, we examine oncogenic transformation in mouse Gram-domain containing 2 (Gramd2)+ AT1 cells via oncogenic KRASG12D. Activation of KRASG12D in AT1 cells induces multifocal LUAD, primarily of papillary histology. Furthermore, KRT8+ intermediate cell states were observed in both AT2- and AT1-derived LUAD, but SCGB3A2+, another intermediate cell marker, was primarily associated with AT1 cells, suggesting different mechanisms of tumor evolution. Collectively, our study reveals that Gramd2+ AT1 cells can serve as a cell of origin for LUAD and suggests that distinct subtypes of LUAD based on cell of origin be considered in the development of therapeutics.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Transformación Celular Neoplásica/metabolismo , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
6.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894280

RESUMEN

BACKGROUND: We aimed to determine the prognostic value of an immunoscore reflecting CD3+ and CD8+ T cell density estimated from real-world transcriptomic data of a patient cohort with advanced malignancies treated with immune checkpoint inhibitors (ICIs) in an effort to validate a reference for future machine learning-based biomarker development. METHODS: Transcriptomic data was collected under the Total Cancer Care Protocol (NCT03977402) Avatar® project. The real-world immunoscore for each patient was calculated based on the estimated densities of tumor CD3+ and CD8+ T cells utilizing CIBERSORTx and the LM22 gene signature matrix. Then, the immunoscore association with overall survival (OS) was estimated using Cox regression and analyzed using Kaplan-Meier curves. The OS predictions were assessed using Harrell's concordance index (C-index). The Youden index was used to identify the optimal cut-off point. Statistical significance was assessed using the log-rank test. RESULTS: Our study encompassed 522 patients with four cancer types. The median duration to death was 10.5 months for the 275 participants who encountered an event. For the entire cohort, the results demonstrated that transcriptomics-based immunoscore could significantly predict patients at risk of death (p-value < 0.001). Notably, patients with an intermediate-high immunoscore achieved better OS than those with a low immunoscore. In subgroup analysis, the prediction of OS was significant for melanoma and head and neck cancer patients but did not reach significance in the non-small cell lung cancer or renal cell carcinoma cohorts. CONCLUSIONS: Calculating CD3+ and CD8+ T cell immunoscore using real-world transcriptomic data represents a promising signature for estimating OS with ICIs and can be used as a reference for future machine learning-based biomarker development.

7.
Cancer Control ; 30: 10732748231197878, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37703814

RESUMEN

INTRODUCTION: The Florida-California Cancer Research, Education, and Engagement (CaRE2) Health Equity Center is a triad partnership committed to increasing institutional capacity for cancer disparity research, the diversity of the cancer workforce, and community empowerment. This article provides an overview of the structure, process innovations, and initial outcomes from the first 4 years of the CaRE2 triad partnership. METHODS: CaRE2 serves diverse populations in Florida and California using a "molecule to the community and back" model. We prioritize research on the complex intersection of biological, environmental, and social determinants health, working together with scientific and health disparities communities, sharing expertise across institutions, bidirectional training, and community outreach. Partnership progress and outcomes were assessed using mixed methods and four Program Steering Committee meetings. RESULTS: Research capacity was increased through development of a Living Repository of 81 cancer model systems from minority patients for novel cancer drug development. CaRE2 funded 15 scientific projects resulting in 38 publications. Workforce diversity entailed supporting 94 cancer trainees (92 URM) and 34 ESIs (32 URM) who coauthored 313 CaRE2-related publications and received 48 grants. Community empowerment was promoted via outreaching to more than 3000 individuals, training 145 community cancer advocates (including 28 Community Scientist Advocates), and publishing 10 community reports. CaRE2 members and trainees together have published 639 articles, received 61 grants, and 57 awards. CONCLUSION: The CaRE2 partnership has achieved its initial aims. Infrastructure for translational cancer research was expanded at one partner institution, and cancer disparities research was expanded at the two cancer centers.


Asunto(s)
Equidad en Salud , Neoplasias , Humanos , California , Florida , Grupos Minoritarios , Neoplasias/terapia
8.
PLoS One ; 18(4): e0284949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37104368

RESUMEN

INTRODUCTION: Many patients with growth hormone-secreting pituitary adenoma (GHPA) fail to achieve biochemical remission, warranting investigation into epigenetic and molecular signatures associated with tumorigenesis and hormonal secretion. Prior work exploring the DNA methylome showed Myc-Associated Protein X (MAX), a transcription factor involved in cell cycle regulation, was differentially methylated between GHPA and nonfunctional pituitary adenoma (NFPA). We aimed to validate the differential DNA methylation and related MAX protein expression profiles between NFPA and GHPA. METHODS: DNA methylation levels were measured in 52 surgically resected tumors (37 NFPA, 15 GHPA) at ~100,000 known MAX binding sites derived using ChIP-seq analysis from ENCODE. Findings were correlated with MAX protein expression using a constructed tissue microarray (TMA). Gene ontology analysis was performed to explore downstream genetic and signaling pathways regulated by MAX. RESULTS: GHPA had more hypomethylation events across all known MAX binding sites. Of binding sites defined using ChIP-seq analysis, 1,551 sites had significantly different methylation patterns between the two cohorts; 432 occurred near promoter regions potentially regulated by MAX, including promoters of TNF and MMP9. Gene ontology analysis suggested enrichment in genes involved in oxygen response, immune system regulation, and cell proliferation. Thirteen MAX binding sites were within coding regions of genes. GHPA demonstrated significantly increased expression of MAX protein compared to NFPA. CONCLUSION: GHPA have significantly different DNA methylation and downstream protein expression levels of MAX compared to NFPA. These differences may influence mechanisms involved with cellular proliferation, tumor invasion and hormonal secretion.


Asunto(s)
Adenoma , Adenoma Hipofisario Secretor de Hormona del Crecimiento , Hormona de Crecimiento Humana , Neoplasias Hipofisarias , Humanos , Adenoma/patología , Hormona del Crecimiento , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/complicaciones , Neoplasias Hipofisarias/patología
9.
Cancer Epidemiol Biomarkers Prev ; 32(4): 487-495, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791345

RESUMEN

BACKGROUND: Engaging diverse populations in cancer genomics research is of critical importance and is a fundamental goal of the NCI Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. Established as part of the Cancer Moonshot, PE-CGS is a consortium of stakeholders including clinicians, scientists, genetic counselors, and representatives of potential study participants and their communities. Participant engagement is an ongoing, bidirectional, and mutually beneficial interaction between study participants and researchers. PE-CGS sought to set priorities in participant engagement for conducting the network's research. METHODS: PE-CGS deliberatively engaged its stakeholders in the following four-phase process to set the network's research priorities in participant engagement: (i) a brainstorming exercise to elicit potential priorities; (ii) a 2-day virtual meeting to discuss priorities; (iii) recommendations from the PE-CGS External Advisory Panel to refine priorities; and (iv) a virtual meeting to set priorities. RESULTS: Nearly 150 PE-CGS stakeholders engaged in the process. Five priorities were set: (i) tailor education and communication materials for participants throughout the research process; (ii) identify measures of participant engagement; (iii) identify optimal participant engagement strategies; (iv) understand cancer disparities in the context of cancer genomics research; and (v) personalize the return of genomics findings to participants. CONCLUSIONS: PE-CGS is pursuing these priorities to meaningfully engage diverse and underrepresented patients with cancer and posttreatment cancer survivors as participants in cancer genomics research and, subsequently, generate new discoveries. IMPACT: Data from PE-CGS will be shared with the broader scientific community in a manner consistent with participant informed consent and community agreement.


Asunto(s)
Consentimiento Informado , Neoplasias , Humanos , Neoplasias/genética , Motivación , Genómica , Escolaridad
10.
JCO Precis Oncol ; 7: e2200300, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623238

RESUMEN

PURPOSE: Programmed cell death protein-1 (PD-1) receptor and ligand interactions are the target of immunotherapies for more than 20 cancer types. Biomarkers that predict response to immunotherapy are microsatellite instability, tumor mutational burden, and programmed death ligand-1 (PD-L1) immunohistochemistry. Structural variations (SVs) in PD-L1 (CD274) and PD-L2 (PDCD1LG2) have been observed in cancer, but the comprehensive landscape is unknown. Here, we describe the genomic landscape of PD-L1 and PD-L2 SVs, their potential impact on the tumor microenvironment, and evidence that patients with these alterations can benefit from immunotherapy. METHODS: We analyzed sequencing data from cancer cases with PD-L1 and PD-L2 SVs across 22 publications and four data sets, including Foundation Medicine Inc, The Cancer Genome Atlas, International Cancer Genome Consortium, and the Oncology Research Information Exchange Network. We leveraged RNA sequencing to evaluate immune signatures. We curated literature reporting clinical outcomes of patients harboring PD-L1 or PD-L2 SVs. RESULTS: Using data sets encompassing 300,000 tumors, we curated 486 cases with SVs in PD-L1 and PD-L2 and observed consistent breakpoint patterns, or hotspots. Leveraging The Cancer Genome Atlas, we observed significant upregulation in PD-L1 expression and signatures for interferon signaling, macrophages, T cells, and immune cell proliferation in samples harboring PD-L1 or PD-L2 SVs. Retrospective review of 12 studies that identified patients with SVs in PD-L1 or PD-L2 revealed > 50% (52/71) response rate to PD-1 immunotherapy with durable responses. CONCLUSION: Our findings show that the 3'-UTR is frequently affected, and that SVs are associated with increased expression of ligands and immune signatures. Retrospective evidence from curated studies suggests this genomic alteration could help identify candidates for PD-1/PD-L1 immunotherapy. We expect these findings will better define PD-L1 and PD-L2 SVs in cancer and lend support for prospective clinical trials to target these alterations.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Ligandos , Estudios Retrospectivos , Estudios Prospectivos , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética
11.
Cancer Res ; 83(1): 34-48, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36283023

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive disease that disproportionately affects African American (AA) women. Limited targeted therapeutic options exist for patients with TNBC. Here, we employ spatial transcriptomics to interrogate tissue from a racially diverse TNBC cohort to comprehensively annotate the transcriptional states of spatially resolved cellular populations. A total of 38,706 spatial features from a cohort of 28 sections from 14 patients were analyzed. Intratumoral analysis of spatial features from individual sections revealed heterogeneous transcriptional substructures. However, integrated analysis of all samples resulted in nine transcriptionally distinct clusters that mapped across all individual sections. Furthermore, novel use of join count analysis demonstrated nonrandom directional spatial dependencies of the transcriptionally defined shared clusters, supporting a conserved spatio-transcriptional architecture in TNBC. These findings were substantiated in an independent validation cohort comprising 17,861 spatial features representing 15 samples from 8 patients. Stratification of samples by race revealed race-associated differences in hypoxic tumor content and regions of immune-rich infiltrate. Overall, this study combined spatial and functional molecular analyses to define the tumor architecture of TNBC, with potential implications in understanding TNBC disparities. SIGNIFICANCE: Spatial transcriptomics profiling of a diverse cohort of triple-negative breast cancers and innovative informatics approaches reveal a conserved cellular architecture across cancers and identify proportional differences in tumor cell composition by race.


Asunto(s)
Transcriptoma , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/patología , Perfilación de la Expresión Génica , Negro o Afroamericano , Regulación Neoplásica de la Expresión Génica
12.
Cancer Discov ; 12(11): 2530-2551, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36121736

RESUMEN

Women of sub-Saharan African descent have disproportionately higher incidence of triple-negative breast cancer (TNBC) and TNBC-specific mortality across all populations. Population studies show racial differences in TNBC biology, including higher prevalence of basal-like and quadruple-negative subtypes in African Americans (AA). However, previous investigations relied on self-reported race (SRR) of primarily U.S. populations. Due to heterogeneous genetic admixture and biological consequences of social determinants, the true association of African ancestry with TNBC biology is unclear. To address this, we conducted RNA sequencing on an international cohort of AAs, as well as West and East Africans with TNBC. Using comprehensive genetic ancestry estimation in this African-enriched cohort, we found expression of 613 genes associated with African ancestry and 2,000+ associated with regional African ancestry. A subset of African-associated genes also showed differences in normal breast tissue. Pathway enrichment and deconvolution of tumor cellular composition revealed that tumor-associated immunologic profiles are distinct in patients of African descent. SIGNIFICANCE: Our comprehensive ancestry quantification process revealed that ancestry-associated gene expression profiles in TNBC include population-level distinctions in immunologic landscapes. These differences may explain some differences in race-group clinical outcomes. This study shows the first definitive link between African ancestry and the TNBC immunologic landscape, from an African-enriched international multiethnic cohort. See related commentary by Hamilton et al., p. 2496. This article is highlighted in the In This Issue feature, p. 2483.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/genética , Transcriptoma , Negro o Afroamericano/genética , Biología
13.
BMC Genomics ; 23(1): 614, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008758

RESUMEN

BACKGROUND: The use of archived formalin-fixed paraffin-embedded (FFPE) tumor tissues has become a common practice in clinical and epidemiologic genetic research. Simultaneous extraction of DNA and RNA from FFPE tissues is appealing but can be practically challenging. Here we report our results and lessons learned from processing FFPE breast tumor tissues for a large epidemiologic study. METHODS: Qiagen AllPrep DNA/RNA FFPE kit was adapted for dual extraction using tissue punches or sections from breast tumor tissues. The yield was quantified using Qubit and fragmentation analysis by Agilent Bioanalyzer. A subset of the DNA samples were used for genome-wide DNA methylation assays and RNA samples for sequencing. The QC metrices and performance of the assays were analyzed with pre-analytical variables. RESULTS: A total of 1859 FFPE breast tumor tissues were processed. We found it critical to adjust proteinase K digestion time based on tissue volume to achieve balanced yields of DNA and RNA. Tissue punches taken from tumor-enriched regions provided the most reliable output. A median of 1475 ng DNA and 1786 ng RNA per sample was generated. The median DNA integrity number (DIN) was 3.8 and median DV200 for RNA was 33.2. Of 1294 DNA samples used in DNA methylation assays, 97% passed quality check by qPCR and 92% generated data deemed high quality. Of the 130 RNA samples with DV200 ≥ 20% used in RNA-sequencing, all but 5 generated usable transcriptomic data with a mapping rate ≥ 60%. CONCLUSIONS: Dual DNA/RNA purification using Qiagen AllPrep FFPE extraction protocol is feasible for clinical and epidemiologic studies. We recommend tissue punches as a reliable source material and fine tuning of proteinase K digestion time based on tissue volume. IMPACT: Our protocol and recommendations may be adapted by future studies for successful extraction of archived tumor tissues.


Asunto(s)
Neoplasias de la Mama , ARN , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , ADN/genética , Endopeptidasa K , Femenino , Formaldehído , Humanos , Adhesión en Parafina/métodos , ARN/genética , Fijación del Tejido/métodos
14.
Am Soc Clin Oncol Educ Book ; 42: 1-6, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35522911

RESUMEN

Conducting clinical research in low- and middle-income countries is essential to address the global impact of cancer. In 2017, ASCO convened an Academic Global Oncology Task Force that recommended an increase in global oncology research to enhance the field of oncology through research and education. The emerging crisis of cancer in Africa demands a similar global commitment to workforce development, infrastructure building, and access to care that will provide a platform for impactful and relevant research efforts. In the words of the African Organisation for Research and Training in Cancer, it is time to "transform cancer control in Africa through collaboration in education, research, (and) delivery of equitable and timely interventions to minimize the impact of cancer." Although there are some initiatives aimed at developing research capacity to host trials in Africa, there is now a need to establish strategic partnerships with the aim of achieving harmonized, accredited clinical trial units capable of running trials according to Good Clinical Practice standards.


Asunto(s)
Negro o Afroamericano , Ensayos Clínicos como Asunto , Participación del Paciente , Humanos , Neoplasias/etnología , Neoplasias/terapia
15.
Cancer Causes Control ; 33(6): 831-841, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35384527

RESUMEN

PURPOSE: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects women of African ancestry (WAA) and is often associated with poor survival. Although there is a high prevalence of TNBC across West Africa and in women of the African diaspora, there has been no comprehensive genomics study to investigate the mutational profile of ancestrally related women across the Caribbean and West Africa. METHODS: This multisite cross-sectional study used 31 formalin-fixed paraffin-embedded (FFPE) samples from Barbadian and Nigerian TNBC participants. High-resolution whole exome sequencing (WES) was performed on the Barbadian and Nigerian TNBC samples to identify their mutational profiles and comparisons were made to African American, European American and Asian American sequencing data obtained from The Cancer Genome Atlas (TCGA). Whole exome sequencing was conducted on tumors with an average of 382 × coverage and 4335 × coverage for pooled germline non-tumor samples. RESULTS: Variants detected at high frequency in our WAA cohorts were found in the following genes NBPF12, PLIN4, TP53 and BRCA1. In the TCGA TNBC cases, these genes had a lower mutation rate, except for TP53 (32% in our cohort; 63% in TCGA-African American; 67% in TCGA-European American; 63% in TCGA-Asian). For all altered genes, there were no differences in frequency of mutations between WAA TNBC groups including the TCGA-African American cohort. For copy number variants, high frequency alterations were observed in PIK3CA, TP53, FGFR2 and HIF1AN genes. CONCLUSION: This study provides novel insights into the underlying genomic alterations in WAA TNBC samples and shines light on the importance of inclusion of under-represented populations in cancer genomics and biomarker studies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Barbados , Estudios Transversales , Femenino , Genómica , Humanos , Mutación , Nigeria/epidemiología , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
16.
Ethn Dis ; 32(1): 61-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35106045

RESUMEN

Well-characterized disparities in clinical research have disproportionately affected patients of color, particularly in underserved communities. To tackle these barriers, Genentech formed the External Council for Advancing Inclusive Research, a 14-person committee dedicated to developing strategies to increase clinical research participation. To help improve the recruitment and retention of patients of color, this article chronicles our efforts to tangibly address the clinical research barriers at the system, study, and patient levels over the last four years. These efforts are one of the initial steps to fully realize the promise of personalized health care and provide increased patient benefit at less cost to society. Instead of simply acknowledging the problem, here we illuminate the collaborative and multilevel strategies that have been effective in delivering meaningful progress for patients.

17.
Eur Urol ; 81(5): 458-462, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35031163

RESUMEN

A rare African ancestry-specific germline deletion variant in HOXB13 (X285K, rs77179853) was recently reported in Martinican men with early-onset prostate cancer. Given the role of HOXB13 germline variation in prostate cancer, we investigated the association between HOXB13 X285K and prostate cancer risk in a large sample of 22 361 African ancestry men, including 11 688 prostate cancer cases. The risk allele was present only in men of West African ancestry, with an allele frequency in men that ranged from 0.40% in Ghana and 0.31% in Nigeria to 0% in Uganda and South Africa, with a range of frequencies in men with admixed African ancestry from North America and Europe (0-0.26%). HOXB13 X285K was associated with 2.4-fold increased odds of prostate cancer (95% confidence interval [CI] = 1.5-3.9, p = 2 × 10-4), with greater risk observed for more aggressive and advanced disease (Gleason ≥8: odds ratio [OR] = 4.7, 95% CI = 2.3-9.5, p = 2 × 10-5; stage T3/T4: OR = 4.5, 95% CI = 2.0-10.0, p = 2 × 10-4; metastatic disease: OR = 5.1, 95% CI = 1.9-13.7, p = 0.001). We estimated that the allele arose in West Africa 1500-4600 yr ago. Further analysis is needed to understand how the HOXB13 X285K variant impacts the HOXB13 protein and function in the prostate. Understanding who carries this mutation may inform prostate cancer screening in men of West African ancestry. PATIENT SUMMARY: A rare African ancestry-specific germline deletion in HOXB13, found only in men of West African ancestry, was reported to be associated with an increased risk of overall and advanced prostate cancer. Understanding who carries this mutation may help inform screening for prostate cancer in men of West African ancestry.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias de la Próstata , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Células Germinativas/patología , Mutación de Línea Germinal , Proteínas de Homeodominio/genética , Humanos , Masculino , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
18.
Mol Oncol ; 16(1): 104-115, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437759

RESUMEN

This prospective phase II clinical trial (Side Out 2) explored the clinical benefits of treatment selection informed by multi-omic molecular profiling (MoMP) in refractory metastatic breast cancers (MBCs). Core needle biopsies were collected from 32 patients with MBC at trial enrollment. Patients had received an average of 3.94 previous lines of treatment in the metastatic setting before enrollment in this study. Samples underwent MoMP, including exome sequencing, RNA sequencing (RNA-Seq), immunohistochemistry, and quantitative protein pathway activation mapping by Reverse Phase Protein Microarray (RPPA). Clinical benefit was assessed using the previously published growth modulation index (GMI) under the hypothesis that MoMP-selected therapy would warrant further investigation for GMI ≥ 1.3 in ≥ 35% of the patients. Of the 32 patients enrolled, 29 received treatment based on their MoMP and 25 met the follow-up criteria established by the trial protocol. Molecular information was delivered to the tumor board in a median time frame of 14 days (11-22 days), and targetable alterations for commercially available agents were found in 23/25 patients (92%). Of the 25 patients, 14 (56%) reached GMI ≥ 1.3. A high level of DNA topoisomerase I (TOPO1) led to the selection of irinotecan-based treatments in 48% (12/25) of the patients. A pooled analysis suggested clinical benefit in patients with high TOPO1 expression receiving irinotecan-based regimens (GMI ≥ 1.3 in 66.7% of cases). These results confirmed previous observations that MoMP increases the frequency of identifiable actionable alterations (92% of patients). The MoMP proposed allows the identification of biomarkers that are frequently expressed in MBCs and the evaluation of their role as predictors of response to commercially available agents. Lastly, this study confirmed the role of MoMP for informing treatment selection in refractory MBC patients: more than half of the enrolled patients reached a GMI ≥ 1.3 even after multiple lines of previous therapies for metastatic disease.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunohistoquímica , Irinotecán , Estudios Prospectivos , Resultado del Tratamiento
20.
Genes (Basel) ; 12(9)2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-34573384

RESUMEN

KRAS mutations are one of the most common oncogenic drivers in non-small cell lung cancer (NSCLC) and in lung adenocarcinomas in particular. Development of therapeutics targeting KRAS has been incredibly challenging, prompting indirect inhibition of downstream targets such as MEK and ERK. Such inhibitors, unfortunately, come with limited clinical efficacy, and therefore the demand for developing novel therapeutic strategies remains an urgent need for these patients. Exploring the influence of wild-type (WT) KRAS on druggable targets can uncover new vulnerabilities for the treatment of KRAS mutant lung adenocarcinomas. Using commercially available KRAS mutant lung adenocarcinoma cell lines, we explored the influence of WT KRAS on signaling networks and druggable targets. Expression and/or activation of 183 signaling proteins, most of which are targets of FDA-approved drugs, were captured by reverse-phase protein microarray (RPPA). Selected findings were validated on a cohort of 23 surgical biospecimens using the RPPA. Kinase-driven signatures associated with the presence of the KRAS WT allele were detected along the MAPK and AKT/mTOR signaling pathway and alterations of cell cycle regulators. FoxM1 emerged as a potential vulnerability of tumors retaining the KRAS WT allele both in cell lines and in the clinical samples. Our findings suggest that loss of WT KRAS impacts on signaling events and druggable targets in KRAS mutant lung adenocarcinomas.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Células A549 , Alelos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores Farmacológicos/análisis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Mutación , Proteína Oncogénica v-akt/efectos de los fármacos , Proteína Oncogénica v-akt/metabolismo , Pruebas de Farmacogenómica , Inhibidores de Proteínas Quinasas/farmacología , Estudios Retrospectivos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...